Menu

Az eleveniszapos szennyvíztisztítás részműveletei, méretezésük és kiépítésük

Bevezetés

A lakossági szennyvizek tisztításának jelenlegi lehetőségei alig több mint 100 éves intenzív fejlesztés eredménye. A lakosság kiválasztási hulladékainak (széklet, vizelet) az elhelyezése az ipari forradalmat követően, a nagyvárosok kialakulásával, a 19. század közepén vált igazán kritikussá. A vízöblítéses megoldás (WC) elterjedése lényegesen megnövelte a hulladék térfogatát, amit a rendelkezésre álló talaj már nem tudott kellőképpen befogadni, feldolgozni. Akár csak egy évszázaddal később a mezőgazdasági talajok a túlzott dózisú hígtrágya kihelyezést. A nagyvárosok közcsatornáinak kiépítése éppen ezért a 19. század második felének égető feladata volt. Hamarosan kiderült azonban, hogy az azokkal a felszíni vizekbe került szennyezés igen gyorsan felborította az utóbbiak biológiai egyensúlyát. Oxigénhiányt, majd a víztest berothadását, súlyos károsodását eredményezte.

A teljes cikk letölthető az alábbi linken: Az eleveniszapos szennyvíztisztítás részműveletei, méretezésük és kiépítésük

Mivel a szennyvizek öntözésének már ekkor is évszázados hagyományai voltak, a szennyvizek tisztítását is először annak analógiájára, talajszűréssel próbálták megoldani, intenzifikálni. Egy-két évtized múlva, a 19. század végére azonban kidolgozták a biofilmes (csepegtető testes) és eleveniszapos szennyvíztisztítás technikáit is. Az előbbi igen érzékenynek bizonyult a biológiai és a hidraulikus terhelés mértékére. Kicsit zavaros elfolyó vizet is eredményezett, iszaphozama azonban igen kevés lett. Más kérdés, hogy az ilyen tisztítók előtt annak eltömődését megelőzendően a lebegőanyag tartalom döntő hányadát előülepítéssel kellett eltávolítani. Ez természetesen iszaptermelést, maradékot jelentett. Az eleveniszapos biológiai tisztítás kidolgozásával mind a hidraulikus, mind a biológiai terhelésre kevésbé érzékeny rendszert sikerült kialakítani. Ennél is kedvező ugyan az előülepítés a biológia terhelésének és iszaphozamának a csökkentése tekintetében, de igazán csak a nagyobb, darabos részeket, a gyorsan ülepedő homokok és a felúszó zsír részeket szükséges eltávolítani kiülepedésük, illetőleg iszap felúsztató hatásuk elkerülésére. Különösen a kisebb telepeknél tűnt egyszerűbbnek az előülepítés elhagyása, mert akkor csak egyféle, s jobban stabilizált iszap maradt a kezelésnél.

 

Az eleven iszapos biológiai szennyvíztisztítás a lebegő iszapot tartalmazó szennyvíz levegőztetését jelenti. A pelyhekké összeálló mikroorganizmusok a szerves szennyező anyagból oxigén segítségével részben széndioxidot, részben saját sejtanyagot (szennyvíziszap) állítanak elő. A mikroorganizmusok szaporodása, elhalása folyamatos, ami a sejtközi állomány újrahasznosítását, s a sejtfal maradék iszapban történő felhalmozódását jelenti. Az élő sejtek és a sejtfal maradék aránya a dinamikus egyensúlyi rendszerben a relatív biológiai terheléstől függő értékre áll be. Ugyan ez igaz az iszap nitrogén és foszfortartalmára is. A maximális sebességgel szaporodó sejt elvileg mintegy 11,5 % nitrogént tartalmaz, míg a megfelelő ammónia oxidációt is biztosító, kisebb iszapterhelésű rendszereknél az iszap nitrogéntartalma csak 5-6 %. A foszfortartalom az iszapban hasonló körülmények között 1,5 % körüli. Ez az átlagos iszapösszetétel határozza meg, hogy a keletkező iszapmaradék a szennyvízzel érkező nitrogén és foszfor terhelés milyen hányadát képes eltávolítani.

 

Az emberek speciális tápanyag-hasznosításának eredményeként, melynek során csak a hasznosítható szerves anyag széntartalmát oxidálják, a hulladékaikba (széklet és vizelet) kerülő, a nitrogén és foszfor kibocsátása negyedének, ötödének a beépítéséhez szükséges szerves anyag maradék áll csak rendelkezésre az átlagos lakossági szennyvizekben. A többlet nitrogén és foszfor ezért a technológia fejlesztésének a kezdeti időszakában a szerves anyag jó hatásfokú eltávolítását követően is a tisztított szennyvízben marad ammónium és orto-foszfát formájában. Ennek a hatása a múlt század 30-as, 40-es éveitől jelentkezett komolyan a befogadóknál, előbb az ammónium toxicitása, majd a nitrát okozta methemoglobinémia, végül a foszfor eutrofizációs hatása és annak áttételes következményei miatt.

 

A múlt század negyvenes éveitől a többlet ammónium oxidációját helyenként már szükségesnek vélték. A denitrifikáció csak a 60-as évektől vált feladattá, míg a foszfor fokozott eltávolítására csak a biológiai többletfoszfor eltávolítás felismerésétől, a 70-es évek elejétől fordítottak igazán jelentős figyelmet. Persze a különböző országok eltérő frissvíz készletei, befogadó szennyezettsége, s egyéb adottságai a szigorítások mértékét mindig is meghatározták. A fejlettebb országok szennyvíztisztítási előírásai a nagyobb tisztítóknál ma már valamennyi tápanyagfajtának (komponensnek) a 70-80 %-os eltávolítását követelik meg. Ez csakis az ammóniumnak a szerves anyaggal egyidejűleg történő oxidációjával, majd a keletkező nitrát redukciójával (elemi nitrogénné), valamint a már említett biológiai többletfoszfor akkumulációval, eltávolítással lehetséges. Az eleveniszapos tisztítókban ezekhez az átalakításokhoz eltérő környezet, iszapterek (levegőztetett, oxigénmentes, valamint oxigén- és nitrát-mentes) kialakítására van szükség. Napjaink telepei ezeket a feltételeket térben, vagy időben váltogatva alakítják ki, lehetővé téve valamennyi részfolyamat optimális sebességű végbemenetelét. Csak így érhető el a megkívánt tisztítási hatásfok és egyidejűleg a minimális beruházási költség. Az üzemeltetés további szabályozással történő optimalizálása mindezeken túl is jelentős költségmegtakarítást eredményezhet.

 

Az eleveniszapos szennyvíztisztítás egyes műveletei, műtárgyai

 

A tisztítóba befolyó szennyvíz sok idegen tárgyat is magával hozhat, melyeket a tisztító műtárgyainak, berendezéseinek a védelme érdekében abból előzetesen el kell távolítani. Ilyenek a vízzel részben görgetett, részben úszó nagyobb tárgyak, fa és kődarabok, a finomabb méretű homok, felúszó zsíros, olajos részek, és egyéb, rendellenesen oda kerülő használati tárgyak. Az utóbbiakra legyen csak egyetlen példa a fülpiszkáló műanyag pálcika. Hogy az miért a szennyvízbe kerül, nehéz megmagyarázni. Ezeket a kőcsapda, a durva, majd finomabb rácsok, szűrők, valamint a homok és zsírfogó műtárgyak távolítják el. Mindegyik darabos szennyezőanyag-fajta eltávolításának megvan a saját szerepe. Azok a technológiai sor legkülönbözőbb elemeit károsíthatják. A homok kiülepedése, valamint a zsírdarabok lassúbb bomlása, oxigénbevitelt rontó hatása, majd felúszása a fázisszétválasztásnál általánosan ismert üzemzavarokhoz vezethet.

 

A kis telepek esetén, mint már a bevezető is érintette, célszerű az előülepítés elhagyása. Az ott említett egyféle iszap keletkezésének előnye mellett szükség van arra a jobb tápanyag arány (szerves-szén : TKN, illetőleg szerves-szén : összes-P) fenntartása érdekében is. Ez egyrészt az anaerob zóna jobb acetát, másrészt az anoxikus medence jobb szerves anyag ellátottsága (denitrifikáció gyorsítása) végett célszerű (Kayser, 2002).

 

A népesebb városok nagy kapacitású telepeinél, ahol az üzemméret következtében az anaerob iszaprothasztás kiépítése is célszerű lehet, az előülepítés mintegy 30 %-al is csökkentheti a biológiai tisztítás térfogatigényét. Az ilyen üzemeknél azért is favorizálják az előülepítést, mert az iszapjának jóval nagyobb a fajlagos energiatartalma (metántermelő potenciálja), mint a szekunder iszapnak.

 

Az előülepítés tervezésénél annak a felületi folyadékterhelése határozza meg a fő méreteket. Az ülepítő felületére számított folyadékterhelés célszerűen 1,5-3 m/h között javasolható. A vízmélység a kör és négyzet alakú keresztmetszet kiépítésénél is átlagosan 2-3 m között változhat. A medencefenékre ülepedő iszapot alkalmas kotrószerkezetnek kell a szívócsonk közelébe összegyűjteni. Az iszapelvétel szivattyúkkal történik, mert az iszap sűrűsödése jelentős.

 

A nagyobb telepeknél a három eltérő feladatú biológiai medencét a fonalasok visszaszorítását segítő, koncentráció-gradienst eredményező több medencéből álló kaszkádként is kiépíthetik. Ilyenkor a tápanyaggal jobban ellátott, első levegőztetett medencét oxikus szelektornak is szokás nevezni. A Johannesburg rendszernél, illetőleg annak a későbbi módosításainál is szokásos az anaerob medence előtt egy gyakran ugyancsak szelektornak nevezett medence beiktatása. Ebben az utóülepítőből visszaforgatott iszap oxigén és nitrát tartalmát kell az anaerob térbe történő bevezetés előtt "elreagáltatni", hogy ott a foszforcserét ne gátolják az annak tápanyagát képező acetát gyors "elégetésével", oxikus, vagy anoxikus felvételével. A szelektorban az oxigénforrások kimerítéséhez belső (endogén), vagy friss szerves tápanyag kell (sejtanyag hidrolízis, vagy érkező szerves szén), valamint megfelelő keverés. Mivel ez a megoldás végül is a foszfor akkumuláló heterotrofok jobb elszaporodását, kellő szelekcióját szolgálja, a megnevezés nem is helyteleníthető.

 

A biológiai medencék térfogatának a tervezését, pontosabban a szükséges iszapkor megválasztását a szennyvíztisztító típusválasztásáról készített korábbi anyag ugyan már részben ismertette, a részletesebb közelítő számítás ismertetésére a következőkben kerül sor. Az eleveniszapos biológia térfogatigénye a napi biológiai terheléstől, s a különböző szennyezőkre elvárt tisztítási hatásfoktól (KOI, ammónium-N, nitrát-N és összes foszfor koncentrációk) függ. Alapvető célja a szükséges iszapkor biztosítása (részletek a típusválasztásnál). A napi biológiai terhelésből (Bd = Qbe BOI5be) a napi iszaphozam közvetlenül számítható (Px = Bd Yb). A terhelés számításánál elhanyagolható a tisztított szennyvízben maradó szerves anyag BOI5 egyenértéke, mert az rendszerint 15-20 mg/l között alakul, s így az érkező szennyvíz hasonló mutatójának csak maximálisan is a huszada. Elhanyagolása tehát nem okoz jelentős hibát, egyben biztonság a tervezésnél. A fajlagos iszaphozam (Yb) ugyanakkor a tisztítandó víz 0,45 mikron méretűnél nagyobb "lebegőanyag" tartalmának, és az iszapkornak a függvénye. Együttes hatásukat a szerves anyagból adódó iszaphozamra jól mutatják az ATV (ATV 131 A, 2000) megfelelő tervezési javaslatának a fajlagosai (1. táblázat)

 

1. táblázat: A BOI5-ként mérhető szerves anyag fajlagos iszaphozama (Yb - kg iszap szárazanyag/kg BOI5) az iszapkor és a lebegőanyag/BOI5 - hányad (XTS,ZB/CBSB,ZB) függvényében.

 

XTS,ZB/CBSB,ZB

Iszapkor napokban kifejezve

4

8

10

15

20

25

0,4

0,79

0,69

0,65

0,59

0,56

0,53

0,6

0,91

0,81

0,77

0,71

0,68

0,65

0,8

1,03

0,93

0,89

0,83

0,80

0,77

1

1,15

1,05

1,01

0,95

0,92

0,89

1,2

1,27

1,17

1,13

1,07

1,04

1,01

Ahol XTS,ZB/CBSB,ZB  -  a 0,45 mikron méretűnél nagyobb

"lebegőanyag" koncentráció/ CBOI5be

 

A fajlagos iszaphozam láthatóan az iszapkorral, tehát az iszap oxidációjának mértékével csökken. Az ehhez szükséges oxigén, illetőleg levegőmennyiség ellenben értelemszerűen nő, amit az oxigénigény számításánál kell figyelembe venni. A teljes iszaphozam számításához azonban még a foszfor eltávolításával keletkező iszapmennyiséget is figyelembe kell venni, bár annak mennyisége viszonylagosan kisebb.

 

A biomasszába felvett foszfor iszaphozama 3g szárazanyag / g így eltávolított foszfor. A vegyszerrel eltávolított részre vassal történő kicsapatáskor 6,8 g/g, alumínium esetén pedig 5,3 g/g további iszaphozam számítandó. Belátható, hogy minden lakos után a napi 60 g BOI5, illetőleg alig valamivel kisebb nagyságú lebegőanyag mennyiség (XTS,ZB/CBSB,ZB @ 0,8) fajlagos biológiai iszaphozama a teljes tápanyag eltávolításnál 0,8 g iszap szárazanyag /g eltávolított BOI5, illetőleg 48 g iszap szárazanyag /fő d. Ugyanez az átlagos napi 1,5-2 g lakosonkénti foszforterhelésre 4,5-6 g iszap szárazanyag /g eltávolított foszfor.

 

Ha az iszap a teljes foszformennyiséget felveszi, akkor számíthatóan az iszap foszfor tartalma 3-4% körüli. Biológiai többletfoszfor eltávolítás (anaerob teres tisztító) nélkül azonban csak 1,5 % körüli foszfortartalom alakul ki az iszapban, s a többletet vegyszerrel kell kicsapatni. A vegyszerigény mértékétől függően a foszfor eltávolításából adódó vegyszeriszap-hozam láthatóan csaknem meg is duplázódhat, de akkor is csak maximálisan 10 g/fő d körül marad. Ez mutatja, hogy az eleveniszapos szennyvíztisztításnál a foszfor iszaphozama a szerves anyag iszaphozamának csak a 10-20 %-a. Ennyivel kell azt az iszapkor számításánál figyelembe venni.

 

A fentiek alapján a fajlagos iszaphozamokkal, illetőleg a napi biológiai és foszforterheléssel a teljes iszaphozam kiszámolható (Px=Bd YBOI + Pd Yp). A biológiai tisztítóban a szükséges iszapkor (Qx) biztosításához éppen a napi iszaphozam ennyiszeres mennyiségének megfelelő iszaptömeg (Mx = Px Qx) szükséges. Ez pedig az átlagosan fenntartható 4-5 kg/m3 iszapkoncentráció (X) mellett az azzal számolható (Vr = Mx / X = Px Qx / X) medence-térfogatban biztosítható. A biológiai és foszforterhelés nagysága (Bd és Pd) a fenti, lakosszámmal történt számításhoz hasonlóan a tisztítótelep napi szennyvízhozama és annak BOI5 és összes foszfor koncentrációja alapján is kiszámolható (Bd = Qbe CBOI5, be , illetőleg Pd = Qbe CP, be).

 

Megjegyzendő, hogy az 1984-es rendelkezés visszaállításával a foszforeltávolítás igénye, a kialakítandó technológia értelemszerűen, a vegyszerigény, iszapszennyezés, illetőleg iszaphozam a fenti összefüggéssel számítható módon változik. Nagyon sok tisztítónknál, hacsak egyedi foszfor határértéke nem kötelezi, szükségtelen az anaerob medencetér. Ennek megfelelően az iszapkort és a korábban javasolt értelemben kisebbre, mintegy 18 naposra lehet csökkenteni.

2012. évi konferencia előadásai, szakmai összefoglalója

Tudástár cikkek

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
Vissza Előre

Az eleveniszapos szennyvíztisztítás

Az eleveniszapos szennyvízkezelés a világ jelenleg üzemelő egyik legnagyobb biotechnológiai iparága, ugyanakkor mégis alapvetően különbözik a gazdaságilag fontos fermentációs iparágazatok (mikroorganizmusokból álló biomassza nagyüzemi előállítását szolgáló) ellenőrzött oxigénbevitellel, vagy anélkül működtetett fermentációs rendszereitől. A szennyvíziszap olyan vegyes biológiai kultúra, melynek képesnek kell lennie megbirkózni a szennyvízzel érkező különböző kémiai összetételű, illetőleg molekula- vagy részecskeméretű szerves anyagféleségek hihetetlenül széles skálájával. Mindezen kémiai anyagok egy része a szennyvízcsatornában még az előtt átalakulhat, hogy a tisztítóba beérkezne, más részük pedig biológiailag lebonthatatlan (rezisztens) így átalakulás nélkül jut át a tisztítórendszeren, ha nem adszorbeálódik az iszapon. Az ilyen, ill. a bontható, de mégis toxikus... Tovább >>

Az eleveniszapos szennyvíztisztítás részműveletei, méretezésük és kiépítésük

Bevezetés A lakossági szennyvizek tisztításának jelenlegi lehetőségei alig több mint 100 éves intenzív fejlesztés eredménye. A lakosság kiválasztási hulladékainak (széklet, vizelet) az elhelyezése az ipari forradalmat követően, a nagyvárosok kialakulásával, a 19. század közepén vált igazán kritikussá. A vízöblítéses megoldás (WC) elterjedése lényegesen megnövelte a hulladék térfogatát, amit a rendelkezésre álló talaj már nem tudott kellőképpen befogadni, feldolgozni. Akár csak egy évszázaddal később a mezőgazdasági talajok a túlzott dózisú hígtrágya kihelyezést. A nagyvárosok közcsatornáinak kiépítése éppen ezért a 19. század második felének égető feladata volt. Hamarosan kiderült azonban, hogy az azokkal a felszíni vizekbe került szennyezés igen gyorsan felborította az utóbbiak... Tovább >>

Eleveniszapos szennyvíztisztítás fejlesztésének irányai

I. BOI és nitrogén eltávolítás 1. Bevezetés A kommunális szennyvíztisztítás feladata a lakosság által felhasznált és elszennyezett közhasználatú víz minőségének a részleges visszaállítása a befogadókba történő bevezetést megelőzően. A szennyezők eltávolításának szükséges mértékét /BOI, KOI, NH4-N, NO3-N, SP, vagy ortofoszfát/ a befolyó víz szennyezettsége, és a befogadó határértékei befolyásolják. A felsoroltakon túl a mindenkor érvényes előírások számos egyéb komponens koncentrációját is szigorúan szabályoznak az elfolyó vízre, de azok nem lévén a mikroorganizmusok makro-tápanyagai, eltávolításukat a biológiai szennyvíztisztítás csak kisebb mértékben befolyásolja. A biológiai szennyvíztisztítás alapvető feladata a makro-tápanyagok, szerves szén, redukált, vagy oxidált nitrogén, valamint a foszfor eltávolítása. Ez a tanulmány annak... Tovább >>

Biofilterekkel kapcsolatos tapasztalatok a szennyvíztisztításban

1. Bevezetés A biofilterek a szennyvíztisztításnak olyan eszközei, melyek mind az oldott komponensek biológiai lebontását, mind a lebegőanyagok eltávolítását elvégzik. A szén- és nitrogén szennyezők eltávolítására vonatkozó képességüket bizonyították, méghozzá magas lebontási arány elérésével. A gyakorlatban meglehetősen változatos a biofilterek teljesítménye. Ez a fejezet a biofilterekkel a szennyvíztisztítás terén szerzett tapasztalatokat összegezi és bemutatja, mi mindenre lehet azokat hasznosítani. Az utóbbi években, a szennyvíztisztításra vonatkozó egyre fokozódó követelmények, különösen a nitrogén-eltávolítási igény tekintetében, eredményezték a biofilmes technológiák fejlődését. A ’80-as évek elején Franciaországban kombinálták először a szűrést a biofilm technológiával úgy, hogy meghatározó biológiai lépcsőként levegőztetett homokszűrést alkalmaztak a KOI eltávolítására. 1986-ban,... Tovább >>

Szennyvíztisztítás környezetbarát lehetőségei ritkábban lakott térségekben

A szennyvizek keletkezése a lakosság életvitelének szükségszerű következménye. Ahol az emberek főznek, edényeket mosogatnak, tisztálkodnak, mosnak, s ahol a toalett a lakásukban van, szennyvíz keletkezik. Az így keletkező vizek azért szennyvizek, mert felhasználásuk során szennyező anyagok is kerülnek bele. Mivel a hazai lakosság 98 %-a központi vízellátásról kapja a vizet, ilyen hányadánál a szennyvíz nem a víz kivételi helyén, a víz forrásánál keletkezik. Az emberi vízhasználatnak éppen ez a legnagyobb problémája. Más területekről származó ízet szennyez el, melyet azután a felhasználó környezet igényei szerint kell megtisztítani, s a tisztított vizet és tisztítás maradékát (szennyvíziszap, rácsszemét, homok) a tisztító közelében kell... Tovább >>

Eleveniszapos lépcső kiépítése csepegtetőtestek után a hazai és európai normák teljesítése érdekében

Bevezetés  A szennyvíztisztítás célja a befogadókat terhelő szennyezők szükséges mértékű visszatartása. Ez védi meg vízbázisainkat, melyek egyrészt a felszín alatti víztartalékok, másrészt egyre gyakrabban a tisztított szennyvizeket befogadó felszíni vizek. A gyöngyösi szennyvíztisztító elfolyó vízének ki kell elégíteni a 3/1984. (II. 07.) O.V.H. sz. rendelet VI. vízminőségi kategóriájának határértékeit. Tekintettel a városi tisztító korábbi kialakítására és a városban működő hús- és tejfeldolgozás szennyvízkibocsátására KOI-ra 130 g/m3 egyedi határértéket kapott a telep. A gyöngyösi szennyvíztisztítás átalakításának célja kettős volt. Egyrészt a rosszul flokkuláló leszakadt biofilm maradványok jobb kiszűrésével kellett javítani a tisztított elfolyó víz BOI5 és KOI mutatóit, másrészt a nitrifikáció növelésével a... Tovább >>

Hazai szennyvíztisztító kapacitás reális felmérésének problémái

A hazai szennyvízgyűjtő és szennyvíztisztító kapacitások reális felmérése mind az EU csatlakozás kapcsán, mind az azzal kapcsolatosan felmerülő beruházás és költségigények pontosítása vonatkozásában rendkívül aktuális. Célszerű az a hazai befogadó határértékek már lassan egy évtizede aktuális módosításával összefüggésben is. EU ajánlás az utóbbira 1991-ben született. Bár a közcsatorna-statisztika elkészítése is komoly feladatot jelent, annál bonyolultabbnak tűnik a szennyvíztisztító kapacitások megítélése. A hagyományos hazai differenciálás mechanikai / biológiai tisztítást és tápanyag eltávolítást különböztet meg. Sajnos az utóbbi kettő egyértelmű elkülönítését a felmérések nem pontosítják, megadásuk kívánnivalókat hagy maga után. Jelen tanulmányban kísérletet teszünk az egyes fokozatok egyértelmű behatárolására, meghatározó paramétereik pontosítására, valamint... Tovább >>

Elárasztott, rögzített-ágyas szennyvíztisztítók

1. Folyamatleírás A biofilm formájában kialakuló mikroorganizmus tömeg –biomassza- segítségével történő biológiai szennyvíztisztítás meghatározója a film felszíni rétegében lévő baktérium és protozoák intenzív szaporodása, anyagcseréje. A biofilmes tisztítás a szennyvíztisztítás egyik legősibb formája (BISHOP és KINNER, 1986). A szennyvíztisztítás újkori követelményei, a helymegtakarításra való törekvés, valamint az üzemeltetés egyszerűsége miatt mintegy 10-15 éve egyre gyakrabban alkalmazzák a biofilmes eljárásokat, vagy un. „rögzített-ágyas reaktorokat” a szennyvíztisztításban. Mivel ezeknél a tisztítás részben, vagy döntően a biofilm tevékenységének eredménye, ezért az EN 1085 Európai Szabvány „biofilm reaktoroknak” nevezi őket. Ezen a csoporton belül megkülönböztethetők az elárasztott rögzített-ágyas reaktorok, melyek rögzített hordozófelülettel, és elméletileg több, mint... Tovább >>

Eleveniszapos szennyvíztisztítási technológiák és szabályozás igényük fejlődése

Bevezetés A szennyvíztisztítás a humán infrastruktura elengedhetetlenül szükséges része, melyet az emberi élet minőségbiztosítása első helyen kiemelt ágazatának, a közegészség biztosításának az igénye hozott létre. Fő célja, hogy az emberiség káros vízszennyezése ellen védje ivóvíz bázisainkat, melyek egyrészt a felszín alatti víztartalékaink, másrészt az egyre szélesebb körben nyersvízforrásainkat jelentő élővizeink. Ezeknek a vízkészleteknek egyébként a Föld fejlődésének legutolsó néhány tíz évmilliója során olyan egészséges, dinamikus egyensúlya alakult ki, amely lehetővé tette az emberiség utóbbi néhány ezer év során bekövetkezett robbanásszerű fejlődését. A fejlődés természetes velejárója ugyan a korábbi egyensúly lassú eltolódása, napjainkban azonban sok térségben annak ugrásszerű változása, megbomlása figyelhető meg.... Tovább >>

Aerob szennyvíztisztítási folyamatok modellezése

Az elfolyó víz minőségének javítására irányuló erőfeszítések oda vezettek, hogy a szennyvíztisztítók felépítése és üzemeltetési soha nem látott bonyolultságot ért el. Éppen ezért, a mai telepek és üzemeletetésük megtervezéséhez elengedhetetlen a dinamikus modellezés használata. Az összes ma használatos modell determinisztikus, mely alól csak néhány fekete doboz elvű irányítási modell alkot kivételt. A modellek fő célja, hogy minél pontosabb leírását adják a szennyvíztisztítókban zajló folyamatoknak. Ennek ellenére, a modellek soha nem írhatják le teljesen a valóságot, mivel a biológiai folyamatok sokszínűségét a mai ismereteink szerint nem lehet pontosan meghatározni. (Egyébként ha a modellezés pontossága eléri a teljes pontosságot, akkor az már... Tovább >>

Eleveniszapos szennyvíztisztítás és tervezése

 A technológia kialakulása, történeti fejlődése Egy iszapkörös eljárások Az élővizek oxigénellátását és öntisztulását intenzifikáló, levegőztetéssel történő szennyvíztisztítás 1910 körül kezdődött Angliában (von der Emde, 1964). Ardern és Lockett (1914) Manchasterben is ilyen tisztítást végzett, de a levegőztetést bizonyos idő elteltével leállították, majd hagyták ülepedni a rendszert. A tiszta részt dekantálták, majd friss szennyvízzel töltötték fel a levegőztető teret, s ismételték a műveleteket újra és újra. Hat órás levegőztetési ciklusokat tartva, megfelelő iszapkoncentráció kialakulása után teljes nitrifikációt értek el. A leülepedett iszapot „eleven iszapnak” nevezték. Az első gyakorlati berendezés ennek megfelelően egy olyan betáplálási és tisztított víz elvételi ciklusokkal működő eleveniszapos rendszer volt,... Tovább >>

Szennyvíztisztítás kialakulása, fejlődése napjainkig

A lakossági szennyvizek tisztításának története A lakossági szennyvizek mennyisége, minősége az emberiség életvitelével együtt változott. A legutóbbi két évszázadban vált egyértelművé, hogy elhelyezését, ártalom-mentesítését, az általuk okozott problémát valamilyen szabályozással kordában kell tartani. A fejletlenebb országokban nagyon sok helyen még ma is előfordul, hogy a szennyvizek magában a vízfolyásban keletkeznek, hiszen a lakosság ott tisztogatja a ruháit. Ha már fúrt kútból történik a vízellátás, vagy akár vízvezetékes is legyen a vízellátás, a szennyvíz elvezetés még nincs szükségszerűen kiépítve, azaz semmilyen gyűjtőcsatorna rendszer nincs. Ilyenkor természetes, hogy a szennyvizet a legközelebb eső felszíni befogadóba vezetik be. A ritkán lakott területeken... Tovább >>

Szennyvíztisztítás kulcskérdései és főbb fejlődési irányai

1. A lakossági szennyvizek gyűjtésének, tisztításának kialakulása.  A lakossági szennyvizek ugyan sok forrásból eredhetnek, azok többnyire emberi fogyasztás, anyagcsere eredménye. A lakossági szennyvizek ugyanakkor az emberek mintegy napi 2-3 liternyi kiválasztási termékén (vizelet és széklet) túl mintegy 50-szer annyi folyékony hulladékot, leginkább mosó, öblítővizet is tartalmaznak, túlzottan felhígítva az előzőt. Ekkora szennyvíz-mennyiséggel a városok lakóterülete nagy térfogata miatt már kellő elszivárgási adottságok (kedvező talajadottságok, szennyvíztisztító hatás) esetén sem terhelhető a talajvízszint emelkedés és talajvízszennyezés miatt. Elszállítására legpraktikusabb a vízellátó rendszerhez hasonló szennyvízgyűjtő csatornarendszer bizonyult. A befogadók fokozódó elszennyeződése miatt került kiépítésre a csatornarendszer kifolyási pontjánál az idővel egyre jobb tisztítási hatásfokot... Tovább >>

2000 LE-nél kisebb telepek szennyvíztisztítási technológiái

Bevezetés A címet talán jobb lenne úgy megfogalmazni, hogy az ilyen terheléshez szóba jöhető, vagy alkalmas szennyvíztisztítási technológiák. A szóba jöhetőség azonban túlzottan elvi, általános, hiszen megfelelő biológiai és hidraulikus terhelés és kialakítás, szabályozás, ellenőrzés esetén szinte mindegyik ismert módszer szóba jöhet, alkalmazható. A költségeik szempontjából ezeken túl meghatározó a tisztítás minőségi előírásainak országos és lokális szabályozása is, ami a (kiépítési és üzemeltetési) engedélyezhetőség kérdését is szabályozza. Az utóbbiak kapcsán felvetődik, hogy az engedélyezhetőség jogi-műszaki kritériumai nem is biztos, hogy összhangban vannak a tényleges alkalmazhatóságéval, megfelelőségével. Az előzőhöz a technológia hivatali regisztráltsága, valamint hatósági építési engedélyi jóváhagyása kell. Sajnos... Tovább >>

Szennyvizek szerves anyagai és szervetlen növényi tápanyagai újrahasznosításának lehetőségei

A lakossági szennyvizek sokféle növényi és állati eredetű, de az ember által részben átalakított szerves anyagot tartalmaznak. Mellettük mintegy 5-8-szor kisebb koncentrációban vannak azokban a növényi élet számára elengedhetetlen ammónium, valamint foszfát. A növények makro-tápanyagai közül a kálium ugyanakkor az előzőekhez képest a szükségesnél lényegesen kisebb arányban van csak a szennyvízben. A szennyvizek szerves anyagainak egy részét (cukrok, fehérjék, zsírok) az anaerob mikroorganizmusok metánná és széndioxiddá tudják alakítani, ami azok energiatartalmának az ismételt hasznosítására elvileg lehetőséget ad. A kis koncentrációjuk miatt azonban a gyakorlatban a közvetlen út a hideg vízben igen lassú átalakulási sebesség miatt nem gazdaságos. Az aerob mikroorganizmusok... Tovább >>

CSTR reaktorok és kontakt eljárások ipari szennyvizek anaerob kezelésére

Rövidítések: BOI - biológiai oxigénigény KOI - kémiai oxigénigény CSTR - tökéletesen kevert tank reaktor ESP - fölösiszap termelés HRT - átlagos hidraulikus tartózkodási idő MCRT - átlagos iszapkor (szerves lebegő anyagra) MLSS - az iszapkeverék lebegőanyag tartalma (szárazanyaga) MLVSS - az iszap szárazanyag tartalmának szerves része (izzítási vesztesége) SRT - átlagos iszapkor (öszzes lebegőanyagra) TKN - összes Kjeldahl-nitrogén TOC - összes szerves szén UASB - felfele áramló folyadékos anaerob iszapréteg VSS - a lebegőanyag tartalom szerves(illó) része 1. Az anaerob reaktor konfigurációjának értelmezése A CSTR (tökéletesen kevert tank) reaktorok és a kontakt eljárások egyaránt jellemző tulajdonsága a biológiai reaktor tökéletes átkeveredése.... Tovább >>

Szennyvíztisztítás követelményei és a tisztítótelep típusválasztási lehetőségei Magyarországon

Bevezetés A szennyvíztisztítás típusának megválasztását egyik oldalról a tisztítási igény, azaz a befogadóba kibocsátható tisztított szennyvíz minőségi követelményei (jogi előírásai), másrészről a kor tudományos, műszaki ismeretei határolják be. A szennyvíztisztítás lehetőségeit illetően az elmúlt évtizedben számos áttekintő kiadvány került az olvasók elé (Öllős, 1991; Sedlak,.1992; Czakó és Miháltz, 1993; Sorensen és Jorgensen 1993; Kárpáti, 2002a; Seviour et al. 2002;). Ezek alapján egyértelmű, hogy a fejlettebb, nagyobb lakos sűrűségű országokban, napjainkban a szennyvíztisztítás mintegy 90 % -ában eleveniszapos rendszerekkel történik. A szóba jöhető különböző változatokat ezek a kiadványok igen részletesen leírják, a szennyvíztisztítással szemben támasztott regionális követelményeket azonban nem részletezik. Ez országonként... Tovább >>

Kapcsolat Info

Ha a szolgáltatásainkkal kapcsolatban bármilyen kérdése merült fel, az alábbi címeken elérhet minket.

PureAqua Kft.

Székhely: 8200 Veszprém, 8200 Veszprém, Lőszergyári út 6.
Levelezési cím: 8200 Veszprém, Lőszergyári út 6.
Telefon:+36-88-794-243
Fax:+36-88-799-132
Skype:pureaqua01
Web:http://www.pureaqua.hu