Menu

Az eleveniszapos szennyvíztisztítás részműveletei, méretezésük és kiépítésük

Bevezetés

A lakossági szennyvizek tisztításának jelenlegi lehetőségei alig több mint 100 éves intenzív fejlesztés eredménye. A lakosság kiválasztási hulladékainak (széklet, vizelet) az elhelyezése az ipari forradalmat követően, a nagyvárosok kialakulásával, a 19. század közepén vált igazán kritikussá. A vízöblítéses megoldás (WC) elterjedése lényegesen megnövelte a hulladék térfogatát, amit a rendelkezésre álló talaj már nem tudott kellőképpen befogadni, feldolgozni. Akár csak egy évszázaddal később a mezőgazdasági talajok a túlzott dózisú hígtrágya kihelyezést. A nagyvárosok közcsatornáinak kiépítése éppen ezért a 19. század második felének égető feladata volt. Hamarosan kiderült azonban, hogy az azokkal a felszíni vizekbe került szennyezés igen gyorsan felborította az utóbbiak biológiai egyensúlyát. Oxigénhiányt, majd a víztest berothadását, súlyos károsodását eredményezte.

A teljes cikk letölthető az alábbi linken: Az eleveniszapos szennyvíztisztítás részműveletei, méretezésük és kiépítésük

Mivel a szennyvizek öntözésének már ekkor is évszázados hagyományai voltak, a szennyvizek tisztítását is először annak analógiájára, talajszűréssel próbálták megoldani, intenzifikálni. Egy-két évtized múlva, a 19. század végére azonban kidolgozták a biofilmes (csepegtető testes) és eleveniszapos szennyvíztisztítás technikáit is. Az előbbi igen érzékenynek bizonyult a biológiai és a hidraulikus terhelés mértékére. Kicsit zavaros elfolyó vizet is eredményezett, iszaphozama azonban igen kevés lett. Más kérdés, hogy az ilyen tisztítók előtt annak eltömődését megelőzendően a lebegőanyag tartalom döntő hányadát előülepítéssel kellett eltávolítani. Ez természetesen iszaptermelést, maradékot jelentett. Az eleveniszapos biológiai tisztítás kidolgozásával mind a hidraulikus, mind a biológiai terhelésre kevésbé érzékeny rendszert sikerült kialakítani. Ennél is kedvező ugyan az előülepítés a biológia terhelésének és iszaphozamának a csökkentése tekintetében, de igazán csak a nagyobb, darabos részeket, a gyorsan ülepedő homokok és a felúszó zsír részeket szükséges eltávolítani kiülepedésük, illetőleg iszap felúsztató hatásuk elkerülésére. Különösen a kisebb telepeknél tűnt egyszerűbbnek az előülepítés elhagyása, mert akkor csak egyféle, s jobban stabilizált iszap maradt a kezelésnél.

 

Az eleven iszapos biológiai szennyvíztisztítás a lebegő iszapot tartalmazó szennyvíz levegőztetését jelenti. A pelyhekké összeálló mikroorganizmusok a szerves szennyező anyagból oxigén segítségével részben széndioxidot, részben saját sejtanyagot (szennyvíziszap) állítanak elő. A mikroorganizmusok szaporodása, elhalása folyamatos, ami a sejtközi állomány újrahasznosítását, s a sejtfal maradék iszapban történő felhalmozódását jelenti. Az élő sejtek és a sejtfal maradék aránya a dinamikus egyensúlyi rendszerben a relatív biológiai terheléstől függő értékre áll be. Ugyan ez igaz az iszap nitrogén és foszfortartalmára is. A maximális sebességgel szaporodó sejt elvileg mintegy 11,5 % nitrogént tartalmaz, míg a megfelelő ammónia oxidációt is biztosító, kisebb iszapterhelésű rendszereknél az iszap nitrogéntartalma csak 5-6 %. A foszfortartalom az iszapban hasonló körülmények között 1,5 % körüli. Ez az átlagos iszapösszetétel határozza meg, hogy a keletkező iszapmaradék a szennyvízzel érkező nitrogén és foszfor terhelés milyen hányadát képes eltávolítani.

 

Az emberek speciális tápanyag-hasznosításának eredményeként, melynek során csak a hasznosítható szerves anyag széntartalmát oxidálják, a hulladékaikba (széklet és vizelet) kerülő, a nitrogén és foszfor kibocsátása negyedének, ötödének a beépítéséhez szükséges szerves anyag maradék áll csak rendelkezésre az átlagos lakossági szennyvizekben. A többlet nitrogén és foszfor ezért a technológia fejlesztésének a kezdeti időszakában a szerves anyag jó hatásfokú eltávolítását követően is a tisztított szennyvízben marad ammónium és orto-foszfát formájában. Ennek a hatása a múlt század 30-as, 40-es éveitől jelentkezett komolyan a befogadóknál, előbb az ammónium toxicitása, majd a nitrát okozta methemoglobinémia, végül a foszfor eutrofizációs hatása és annak áttételes következményei miatt.

 

A múlt század negyvenes éveitől a többlet ammónium oxidációját helyenként már szükségesnek vélték. A denitrifikáció csak a 60-as évektől vált feladattá, míg a foszfor fokozott eltávolítására csak a biológiai többletfoszfor eltávolítás felismerésétől, a 70-es évek elejétől fordítottak igazán jelentős figyelmet. Persze a különböző országok eltérő frissvíz készletei, befogadó szennyezettsége, s egyéb adottságai a szigorítások mértékét mindig is meghatározták. A fejlettebb országok szennyvíztisztítási előírásai a nagyobb tisztítóknál ma már valamennyi tápanyagfajtának (komponensnek) a 70-80 %-os eltávolítását követelik meg. Ez csakis az ammóniumnak a szerves anyaggal egyidejűleg történő oxidációjával, majd a keletkező nitrát redukciójával (elemi nitrogénné), valamint a már említett biológiai többletfoszfor akkumulációval, eltávolítással lehetséges. Az eleveniszapos tisztítókban ezekhez az átalakításokhoz eltérő környezet, iszapterek (levegőztetett, oxigénmentes, valamint oxigén- és nitrát-mentes) kialakítására van szükség. Napjaink telepei ezeket a feltételeket térben, vagy időben váltogatva alakítják ki, lehetővé téve valamennyi részfolyamat optimális sebességű végbemenetelét. Csak így érhető el a megkívánt tisztítási hatásfok és egyidejűleg a minimális beruházási költség. Az üzemeltetés további szabályozással történő optimalizálása mindezeken túl is jelentős költségmegtakarítást eredményezhet.

 

Az eleveniszapos szennyvíztisztítás egyes műveletei, műtárgyai

 

A tisztítóba befolyó szennyvíz sok idegen tárgyat is magával hozhat, melyeket a tisztító műtárgyainak, berendezéseinek a védelme érdekében abból előzetesen el kell távolítani. Ilyenek a vízzel részben görgetett, részben úszó nagyobb tárgyak, fa és kődarabok, a finomabb méretű homok, felúszó zsíros, olajos részek, és egyéb, rendellenesen oda kerülő használati tárgyak. Az utóbbiakra legyen csak egyetlen példa a fülpiszkáló műanyag pálcika. Hogy az miért a szennyvízbe kerül, nehéz megmagyarázni. Ezeket a kőcsapda, a durva, majd finomabb rácsok, szűrők, valamint a homok és zsírfogó műtárgyak távolítják el. Mindegyik darabos szennyezőanyag-fajta eltávolításának megvan a saját szerepe. Azok a technológiai sor legkülönbözőbb elemeit károsíthatják. A homok kiülepedése, valamint a zsírdarabok lassúbb bomlása, oxigénbevitelt rontó hatása, majd felúszása a fázisszétválasztásnál általánosan ismert üzemzavarokhoz vezethet.

 

A kis telepek esetén, mint már a bevezető is érintette, célszerű az előülepítés elhagyása. Az ott említett egyféle iszap keletkezésének előnye mellett szükség van arra a jobb tápanyag arány (szerves-szén : TKN, illetőleg szerves-szén : összes-P) fenntartása érdekében is. Ez egyrészt az anaerob zóna jobb acetát, másrészt az anoxikus medence jobb szerves anyag ellátottsága (denitrifikáció gyorsítása) végett célszerű (Kayser, 2002).

 

A népesebb városok nagy kapacitású telepeinél, ahol az üzemméret következtében az anaerob iszaprothasztás kiépítése is célszerű lehet, az előülepítés mintegy 30 %-al is csökkentheti a biológiai tisztítás térfogatigényét. Az ilyen üzemeknél azért is favorizálják az előülepítést, mert az iszapjának jóval nagyobb a fajlagos energiatartalma (metántermelő potenciálja), mint a szekunder iszapnak.

 

Az előülepítés tervezésénél annak a felületi folyadékterhelése határozza meg a fő méreteket. Az ülepítő felületére számított folyadékterhelés célszerűen 1,5-3 m/h között javasolható. A vízmélység a kör és négyzet alakú keresztmetszet kiépítésénél is átlagosan 2-3 m között változhat. A medencefenékre ülepedő iszapot alkalmas kotrószerkezetnek kell a szívócsonk közelébe összegyűjteni. Az iszapelvétel szivattyúkkal történik, mert az iszap sűrűsödése jelentős.

 

A nagyobb telepeknél a három eltérő feladatú biológiai medencét a fonalasok visszaszorítását segítő, koncentráció-gradienst eredményező több medencéből álló kaszkádként is kiépíthetik. Ilyenkor a tápanyaggal jobban ellátott, első levegőztetett medencét oxikus szelektornak is szokás nevezni. A Johannesburg rendszernél, illetőleg annak a későbbi módosításainál is szokásos az anaerob medence előtt egy gyakran ugyancsak szelektornak nevezett medence beiktatása. Ebben az utóülepítőből visszaforgatott iszap oxigén és nitrát tartalmát kell az anaerob térbe történő bevezetés előtt "elreagáltatni", hogy ott a foszforcserét ne gátolják az annak tápanyagát képező acetát gyors "elégetésével", oxikus, vagy anoxikus felvételével. A szelektorban az oxigénforrások kimerítéséhez belső (endogén), vagy friss szerves tápanyag kell (sejtanyag hidrolízis, vagy érkező szerves szén), valamint megfelelő keverés. Mivel ez a megoldás végül is a foszfor akkumuláló heterotrofok jobb elszaporodását, kellő szelekcióját szolgálja, a megnevezés nem is helyteleníthető.

 

A biológiai medencék térfogatának a tervezését, pontosabban a szükséges iszapkor megválasztását a szennyvíztisztító típusválasztásáról készített korábbi anyag ugyan már részben ismertette, a részletesebb közelítő számítás ismertetésére a következőkben kerül sor. Az eleveniszapos biológia térfogatigénye a napi biológiai terheléstől, s a különböző szennyezőkre elvárt tisztítási hatásfoktól (KOI, ammónium-N, nitrát-N és összes foszfor koncentrációk) függ. Alapvető célja a szükséges iszapkor biztosítása (részletek a típusválasztásnál). A napi biológiai terhelésből (Bd = Qbe BOI5be) a napi iszaphozam közvetlenül számítható (Px = Bd Yb). A terhelés számításánál elhanyagolható a tisztított szennyvízben maradó szerves anyag BOI5 egyenértéke, mert az rendszerint 15-20 mg/l között alakul, s így az érkező szennyvíz hasonló mutatójának csak maximálisan is a huszada. Elhanyagolása tehát nem okoz jelentős hibát, egyben biztonság a tervezésnél. A fajlagos iszaphozam (Yb) ugyanakkor a tisztítandó víz 0,45 mikron méretűnél nagyobb "lebegőanyag" tartalmának, és az iszapkornak a függvénye. Együttes hatásukat a szerves anyagból adódó iszaphozamra jól mutatják az ATV (ATV 131 A, 2000) megfelelő tervezési javaslatának a fajlagosai (1. táblázat)

 

1. táblázat: A BOI5-ként mérhető szerves anyag fajlagos iszaphozama (Yb - kg iszap szárazanyag/kg BOI5) az iszapkor és a lebegőanyag/BOI5 - hányad (XTS,ZB/CBSB,ZB) függvényében.

 

XTS,ZB/CBSB,ZB

Iszapkor napokban kifejezve

4

8

10

15

20

25

0,4

0,79

0,69

0,65

0,59

0,56

0,53

0,6

0,91

0,81

0,77

0,71

0,68

0,65

0,8

1,03

0,93

0,89

0,83

0,80

0,77

1

1,15

1,05

1,01

0,95

0,92

0,89

1,2

1,27

1,17

1,13

1,07

1,04

1,01

Ahol XTS,ZB/CBSB,ZB  -  a 0,45 mikron méretűnél nagyobb

"lebegőanyag" koncentráció/ CBOI5be

 

A fajlagos iszaphozam láthatóan az iszapkorral, tehát az iszap oxidációjának mértékével csökken. Az ehhez szükséges oxigén, illetőleg levegőmennyiség ellenben értelemszerűen nő, amit az oxigénigény számításánál kell figyelembe venni. A teljes iszaphozam számításához azonban még a foszfor eltávolításával keletkező iszapmennyiséget is figyelembe kell venni, bár annak mennyisége viszonylagosan kisebb.

 

A biomasszába felvett foszfor iszaphozama 3g szárazanyag / g így eltávolított foszfor. A vegyszerrel eltávolított részre vassal történő kicsapatáskor 6,8 g/g, alumínium esetén pedig 5,3 g/g további iszaphozam számítandó. Belátható, hogy minden lakos után a napi 60 g BOI5, illetőleg alig valamivel kisebb nagyságú lebegőanyag mennyiség (XTS,ZB/CBSB,ZB @ 0,8) fajlagos biológiai iszaphozama a teljes tápanyag eltávolításnál 0,8 g iszap szárazanyag /g eltávolított BOI5, illetőleg 48 g iszap szárazanyag /fő d. Ugyanez az átlagos napi 1,5-2 g lakosonkénti foszforterhelésre 4,5-6 g iszap szárazanyag /g eltávolított foszfor.

 

Ha az iszap a teljes foszformennyiséget felveszi, akkor számíthatóan az iszap foszfor tartalma 3-4% körüli. Biológiai többletfoszfor eltávolítás (anaerob teres tisztító) nélkül azonban csak 1,5 % körüli foszfortartalom alakul ki az iszapban, s a többletet vegyszerrel kell kicsapatni. A vegyszerigény mértékétől függően a foszfor eltávolításából adódó vegyszeriszap-hozam láthatóan csaknem meg is duplázódhat, de akkor is csak maximálisan 10 g/fő d körül marad. Ez mutatja, hogy az eleveniszapos szennyvíztisztításnál a foszfor iszaphozama a szerves anyag iszaphozamának csak a 10-20 %-a. Ennyivel kell azt az iszapkor számításánál figyelembe venni.

 

A fentiek alapján a fajlagos iszaphozamokkal, illetőleg a napi biológiai és foszforterheléssel a teljes iszaphozam kiszámolható (Px=Bd YBOI + Pd Yp). A biológiai tisztítóban a szükséges iszapkor (Qx) biztosításához éppen a napi iszaphozam ennyiszeres mennyiségének megfelelő iszaptömeg (Mx = Px Qx) szükséges. Ez pedig az átlagosan fenntartható 4-5 kg/m3 iszapkoncentráció (X) mellett az azzal számolható (Vr = Mx / X = Px Qx / X) medence-térfogatban biztosítható. A biológiai és foszforterhelés nagysága (Bd és Pd) a fenti, lakosszámmal történt számításhoz hasonlóan a tisztítótelep napi szennyvízhozama és annak BOI5 és összes foszfor koncentrációja alapján is kiszámolható (Bd = Qbe CBOI5, be , illetőleg Pd = Qbe CP, be).

 

Megjegyzendő, hogy az 1984-es rendelkezés visszaállításával a foszforeltávolítás igénye, a kialakítandó technológia értelemszerűen, a vegyszerigény, iszapszennyezés, illetőleg iszaphozam a fenti összefüggéssel számítható módon változik. Nagyon sok tisztítónknál, hacsak egyedi foszfor határértéke nem kötelezi, szükségtelen az anaerob medencetér. Ennek megfelelően az iszapkort és a korábban javasolt értelemben kisebbre, mintegy 18 naposra lehet csökkenteni.

Kapcsolat Info

Ha a szolgáltatásainkkal kapcsolatban bármilyen kérdése merült fel, az alábbi címeken elérhet minket.

PureAqua Kft.

Székhely: 8200 Veszprém, 8200 Veszprém, Lőszergyári út 6.
Levelezési cím: 8200 Veszprém, Lőszergyári út 6.
Telefon:+36-88-794-243
Fax:+36-88-799-132
Skype:pureaqua01
Web:http://www.pureaqua.hu