Menu

Eleveniszapos szennyvíztisztítási technológiák és szabályozás igényük fejlődése

Bevezetés

A szennyvíztisztítás a humán infrastruktura elengedhetetlenül szükséges része, melyet az emberi élet minőségbiztosítása első helyen kiemelt ágazatának, a közegészség biztosításának az igénye hozott létre. Fő célja, hogy az emberiség káros vízszennyezése ellen védje ivóvíz bázisainkat, melyek egyrészt a felszín alatti víztartalékaink, másrészt az egyre szélesebb körben nyersvízforrásainkat jelentő élővizeink. Ezeknek a vízkészleteknek egyébként a Föld fejlődésének legutolsó néhány tíz évmilliója során olyan egészséges, dinamikus egyensúlya alakult ki, amely lehetővé tette az emberiség utóbbi néhány ezer év során bekövetkezett robbanásszerű fejlődését. A fejlődés természetes velejárója ugyan a korábbi egyensúly lassú eltolódása, napjainkban azonban sok térségben annak ugrásszerű változása, megbomlása figyelhető meg. Kérdés, hogy milyen stádiumban és hogyan sikerül az emberi tevékenység környezetével kialakult egyensúlyát stabilizálni.

A teljes cikk letölthető az alábbi linken: Eleveniszapos szennyvíztisztítási technológiák és szabályozás igényük fejlődése

A folyamatosan szaporodott lakosság folyékony és fél-folyékony hulladékainak feldolgozását, ártalmatlanítását az utóbbi évszázadokig az akkori életvitelnek megfelelően a talaj viszonylagosan nagy biológiai kapacitása biztosította. A nagyobb lakóközösségek, települések, túlnépesedett városok kialakulása eredményeként a hulladékok befogadóivá egyre inkább a felszíni vizek váltak. Ezek mikroorganizmus koncentrációja lényegesen kisebb lévén, térfogati fajlagos hulladék feldolgozó kapacitásuk is kisebb. Sajátos korlátozó tényező az utóbbi rendszerben a fázishatáron az oxigén diffúzió sebessége is. A szennyvíztisztítás intenzifikálása ezért a folyadéktérben lévő mikroorganizmusok koncentrációjának növelését (iszaprecirkuláció) és oxigén ellátásuk megfelelő biztosítását (levegőztetés) igényelte. A tisztítás „szabályozás igénye” a kezdeti kiépítettségnél mindössze a levegőztető medence iszapkoncentrációjának a jól ülepíthető tartományban történő tartása, és a folyamatos levegőellátás biztosítása volt.

Ezzel a megoldással azonban az emberiség századunk első évtizedeiben csupán a szerves tápanyag maradványok (baktérium tápanyag) széndioxiddá és elhalt sejtfalanyaggá történő alakítását, és vizes fázisból történő elkülönítését biztosíthatta. A nitrogén-, és foszforvegyületek többsége oldott formában a tisztított elfolyó vízbe került. A keletkező iszap (fölösiszap) századunk első felében megfelelő stabilizálás, esetleg komposztálás után a termőtalajok tápanyagainak utánpótlására került döntően felhasználásra, bár elég jelentős hányaduk került a lakossági és egyéb szilárd hulladéklerakókba is.

A kommunális szennyvizek teljes tápanyag-eltávolításának kialakítása

Az utóbbi évtizedek problémái egyértelművé tették, hogy a kommunális szennyvizek szerves szennyezettségének és szervetlen tápanyagainak (KOI, BOI, TKN, P) az eltávolítása egyetlen levegőztetett medencében, illetőleg levegőztető és iszap ülepítő medence kombinációjával nem lehetséges. A szervetlen tápanyagok, az ammónium, nitrát és foszfát döntő részének eltávolítása ugyanakkor ma már legtöbb helyen szükséges a befogadók védelme, eutrofizálódásának elkerülését érdekében. Ezt biztosította a negyvenes évektől a nitrifikáció, a hatvanas évektől a denitrifikáció, majd a nyolcvanas évektől a biológiai többletfoszfor eltávolítás kifejlesztése és kiépítése a szennyvíztisztító telepeken (Kárpáti Á. és Monozlay E., 1995, Kárpáti Á. és Rókus T., 1995).

A kommunális szennyvizek átlagos szerves szén/nitrogén/foszfor (C:N:P, vagy KOI:TKN:SP) aránya olyan, hogy a heterotróf mikroorganizmusok az aerob tisztítás során azok nitrogén és foszfor tartalmának csak a negyedét – harmadát tudják beépíteni a keletkező fölösiszapba. A többlet szervetlen tápanyagok eltávolítását kémiai kicsapatással, vagy más, speciálisabb mikroorganizmus fajok tevékenységének hasznosításával kell biztosítani. A foszfor esetében a vegyszeres kicsapatás nem is nagyon drága, de jelentősen (20 – 40 %) növeli az iszaphozamot. Ez annak elhelyezése, vegyszer-szennyezettsége miatt kellemetlen. Az ammónium kicsapatása a jelenleg ismert megoldással (MgNH4PO4 - MAP, vagy struvit) annyira drága, hogy a gyakorlat szempontjából nem jöhet szóba. Ezért is terjedtek el a gyakorlatban már az elmúlt évtizedekben a nitrogén és foszfor eltávolítás biológiai megoldásai.

A tisztítás során az ammónia oxidációját autotróf mikroorganizmusok végzik, majd a nitrát redukciója ismételten a szerves szenet hasznosító heterotróf fajokkal történik. Az autotrófok kisebb szaporodási sebessége miatt nagy tartózkodási idejű, iszapkorú rendszerek kiépítése vált szükségessé. A denitrifikálók tápanyag érzékenysége (NO3- - redukció sebességének függése a szerves tápanyag biológiai bonthatóságától) ugyanakkor elengedhetetlenné tette, hogy a denitrifikáció a rendszer elején a gyorsabban bontható tápanyagban dús, friss szennyvízzel történjen. Ehhez az iszap recirkulációján túl belső recirkuláció kiépítése és nagy folyadékmennyiség mozgatása vált szükségessé (Kárpáti Á, 1998a). A kommunális szennyvizek viszonylag nagy KOI : TKN aránya ugyanakkor kellően hatékony denitrifikációt tesz lehetővé a tisztítás során.

A biológiai többletfoszfor eltávolításnál a specifikus foszfor akkumulációra képes szervezetek még különlegesebb tápanyagigénye (acetát, vagy kis molekulatömegű illó savak) teszi elengedhetetlenné, hogy az anaerob reaktorszakasz legyen a tisztítósor elején. A három szakasz térbeli kialakítása, sorba kötése, netán egy reaktorban, időben történő ciklizálása igen sokféle üzemi technológiai megvalósítást eredményezett az utóbbi évtizedek során. Üzemeltetésük optimalizálásának alapelvei általánosíthatók, a gyakorlati megvalósítás azonban a szabályozásnál is típusonként eltérő megoldásokat eredményezett.

Általánosítható megfigyelés, hogy ahogy a nyers szennyvizek KOI : TKN : S P aránya csökken, a teljes nitrogén- és foszforeltávolítás lehetőségei fokozatosan romlanak. A kommunális szennyvizek esetében éppen ezért bevált gyakorlat a tápanyagarány valamilyen, döntően szénhidrát hulladékkal történő javítása. Erre egyébként veszélytelen, jól bontható ipari hulladékok a legolcsóbb segédanyagok. Metanol, ecetsav adagolása nagyobb költsége miatt csakis célirányosan az anaerob, vagy anoxikus tér tápanyagellátásának javítására jöhet szóba. Lehetőség van ezen túl a rendszer levegőztetés és belső recirkuláció szabályozásával történő optimalizálásra is. Az utóbbi a nitrifikáció gondosabb ellenőrzését, s annak megfelelően a mindenkori levegőztetés ammónium koncentrációval is szabályozott beállítását (set point) jelenti.

Kapcsolat Info

Ha a szolgáltatásainkkal kapcsolatban bármilyen kérdése merült fel, az alábbi címeken elérhet minket.

PureAqua Kft.

Székhely: 8200 Veszprém, 8200 Veszprém, Lőszergyári út 6.
Levelezési cím: 8200 Veszprém, Lőszergyári út 6.
Telefon:+36-88-794-243
Fax:+36-88-799-132
Skype:pureaqua01
Web:http://www.pureaqua.hu